## Lecture: 3-2 The Product and Quotient Rules

Example 1: How do we find the derivative of a product? Is it true that $(f g)^{\prime}=f^{\prime} g^{\prime}$ ? Why or why not?

The Product Rule: If $f$ and $g$ are differentiable then,

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

## Proof of why this is true:

Example 2: If $f(x)=x e^{x}$ find $f^{\prime}(x)$. Then find the second and third derivatives to find a formula for the $n$th derivative $f^{(n)}(x)$.

Example 3: If $h(x)=f(x) g(x)$ as shown below, find $h^{\prime}(3)$.


The Quotient Rule If $f$ and $g$ are differentiable, then

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

Example 4: Find $y^{\prime}$ when $y=\frac{x^{2}+x-2}{x^{3}+6}$

Example 5: Suppose that $f(5)=1, f^{\prime}(5)=6, g(5)=-3$ and $g^{\prime}(5)=2$. Find the following values.
(a) $(f-g)^{\prime}(5)$
(b) $(f g)^{\prime}(5)$
(c) $(g / f)^{\prime}(5)$

Note: Don't use the product or quotient rule unless you have to. Here are a few examples where you can use the product or quotient rules, but it's easier not to!

Example 6: Find the derivative of the following functions.
(a) $f(t)=\sqrt{t}(2 t+5)$
(b) $y=\frac{t^{3}+t+5}{t^{4}}$

Example 7: Find the derivatives of the following functions
(a) $f(z)=\left(z^{2}-\sqrt{z}\right)\left(z^{2}+\sqrt{z}\right)$
(b) $y=\frac{\sqrt{x}-1}{\sqrt{x}+1}$

Example 8: Find the derivative of $f(x)=\frac{x e^{x}}{x+e^{x}}$.

Example 9: Find an equation of the tangent line and normal line to the given curve $y=2 \sqrt{x} e^{x}+1$ at the point $(0,1)$.

Example 10: A manufacturer produces socks. The quantity $q$ of these socks (measured in pairs of socks) that are sold are a function of the selling price $p$ (in dollars), so we can write $q=f(p)$. Then the total revenue earned with a selling price $p$ is $R(p)=p f(p)$.
(a) What does it mean to say $f(10)=20,000$ and $f^{\prime}(10)=3,500$ ?
(b) Assuming the values in part (a), find $R^{\prime}(10)$ and interpret your answer.

